NAME: \qquad

Lessons 3 and 4
Integration by Substitution
Math 16020

1 Integration Rule Resulting from the Chain Rule

In the last class, we frequently used the sum and difference rules when integrating.
(a) $\int(f(x)+g(x)) d x=\int f(x) d x+\int g(x) d x$
(b) $\int(f(x)-g(x)) d x=\int f(x) d x-\int g(x) d x$

Unfortunately, there are no simple integration rules for \qquad and
\qquad .

Example 1. Evaluate

(a) $\int\left(x^{2}\right)\left(x^{3}\right) d x$
(b) $\int\left(x^{2}\right) d x \int\left(x^{3}\right) d x$
(c) What are you supposed to learn from this example?

Although there is not a simple integration formula for products, every derivative rule is a associated with an integral rule. The Chain Rule for derivatives does lead to an integration formula that will help us to integrate some special products.

Theorem 2 (The Chain Rule). If g is differentiable at x and f is differentiable at $g(x)$, then

$$
[f(g(x))]^{\prime}=f^{\prime}(g(x)) g^{\prime}(x)
$$

This derivative rule leads to the integration formula

If we make the substitution

$$
u=g(x)
$$

then

$$
\frac{d u}{d x}=\square \Longrightarrow d u=
$$

\qquad
so we can rewrite our integration formula as

$$
\int f^{\prime}(g(x)) g^{\prime}(x) d x=
$$

\qquad
Example 3. $\int\left(3 x^{2}\right)\left(x^{3}+10\right)^{15} d x$

2 Substitution Examples

As we do these examples, here are some things to keep in mind.

1. Substitution might be a good tool to try if you are working with a product or a quotient (which is a product in disguise).
2. If you are going to use substitution, the function you are trying to integrate often contains a function and its derivative - up to a constant multiple.
3. The function you choose for u is often inside of another function.
4. If you set $u=g(x)$ so that $d u=g^{\prime}(x) d x$, then ALL of $g^{\prime}(x)$ is multiplied by $d x$. For example, if $u=x^{2}+3 x$, then

$$
d u=(2 x+3) d x
$$

It is NOT correct to write
5. After you find $d u$, you can multiply or divide both sides of your equation by a constant to make the substitution easier.
6. After you make the substitution, all of the variables in your new integral should be u 's. Your integral should ONLY CONTAIN ONE VARIABLE - and it should be easier to solve.
7. When you are finding an indefinite integral (no limits) using substitution, your last step is BACK SUBSTITUTION. Your final answer should be in the ORIGINAL VARIABLE.

Example 4. $\int 3 x \sqrt{x^{2}+5} d x$

Example 5. $\int(3 x+4)^{17} d x$

3 Substitution with Definite Integrals

Whenever you are using substitution to solve a definite integral (with limits), you must USE YOUR SUBSTITUTION EQUATION to CHANGE THE LIMITS TO u-LIMITS.

Example 6. $\int_{0}^{1} 2 x^{6} e^{x^{7}+3} d x$

Example 7. $\int_{0}^{\frac{\pi}{3}} \sin (x) \cos ^{4}(x) d x$

4 More examples

Example 8. A function $f(x)$ has tangent line slope $x \sqrt{x-2}$ for all $x>2$. The graph of f passes through the point $\left(3, \frac{9}{15}\right)$. Find a formula for $f(x)$.

Example 9. Find the area under the curve $y=3 \sin (0.5 x)$ from $x=0$ to $x=\pi$.

Example 10. $\int_{0}^{12} \frac{x}{\sqrt{x+4}} d x$

Example 11. The area under the curve $3 e^{0.2 x}$ on the interval $0 \leq x \leq a$ is 45 . What is a ?

